Bayesian Optimization-Based LSTM for Short-Term Heating Load Forecasting
نویسندگان
چکیده
With the increase in population and progress of industrialization, rational use energy heating systems has become a research topic for many scholars. The accurate prediction heat load provides us with scientific solution. Due to complexity difficulty forecasting systems, this paper proposes short-term method based on Bayesian algorithm-optimized long- memory network (BO-LSTM). moving average data smoothing is used eliminate noise from data. Pearson’s correlation analysis determine inputs model. Finally, outdoor temperature previous period are selected as root mean square error (RMSE) main evaluation index, absolute (MAE), bias (MBE), coefficient determination (R2) auxiliary indexes. It was found that RMSE asynchronous length model decreased, proving general practicability method. In conclusion, proposed simple universal.
منابع مشابه
A Bayesian Combination Method for Short Term Load Forecasting
This paper presents the Bayesian Combined Predictor (BCP), a probabilistically motivated predictor for Short Term Load Forecasting (STLF) based on the combination of an artificial neural network (ANN) predictor and two linear regression (LR) predictors. The method is applied to STLF for the Greek Public Power Corporation dispatching center of the island of Crete, using 1994 data, and daily load...
متن کاملShort - Term Load Forecasting
This paper presents a novel hybrid method for short-term load forecasting. The system comprises of two artificial neural networks (ANN), assembled in a hierarchical order. The first ANN is a multilayer perceptron (MLP) which functions as integrated load predictor (ILP) for the forecasting day. The output of the ILP is then fed to another, more complex MLP, which acts as an hourly load predictor...
متن کاملShort-term Load Forecasting Method
Based on Wavelet and Reconstructed Phase Space Zunxiong Liu, Zhijun Kuang, Deyun Zhang 1.Dept. of Information and Communication Eng, Xi’an Jiaotong University. Xi’an, Shanxi, China. 2.Dept. of Information Eng, East China Jiaotong University. Nanchang, Jiangxi, China Abstract: This paper proposed wavelet combination method for short-term forecasting, which makes merit of wavelet decomposition an...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملCombination Model for Short-Term Load Forecasting
Gas demand possesses dual property of growing and seasonal fluctuation simultaneously, it makes gas demand variation possess complex nonlinear character. From previous studies know single model for nonlinear problem can’t get good results but accurately gas forecast were essential part of an efficient gas system planning and operation. In recent years, lots of scholar put forward combination mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2023
ISSN: ['1996-1073']
DOI: https://doi.org/10.3390/en16176234